TECHNICAL REPORT AMR-SS-07-04 # CHNO ENERGETIC POLYMER SPECIFIC HEAT PREDICTION FROM THE PROPOSED NOMINAL/GENERIC (N/G) C_P CONCEPT James P. Billingsley System Simulation and Development Directorate Aviation and Missile Research, Development, and Engineering Center February 2007 Approved for public release. Distribution is unlimited. #### **DESTRUCTION NOTICE** FOR CLASSIFIED DOCUMENTS, FOLLOW THE PROCEDURES IN DoD 5200.22-M, INDUSTRIAL SECURITY MANUAL, SECTION II-19 OR DoD 5200.1-R, INFORMATION SECURITY PROGRAM REGULATION, CHAPTER IX. FOR UNCLASSIFIED, LIMITED DOCUMENTS, DESTROY BY ANY METHOD THAT WILL PREVENT DISCLOSURE OF CONTENTS OR RECONSTRUCTION OF THE DOCUMENT. #### DISCLAIMER THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS. #### TRADE NAMES USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE. | REPORT DOCUMENTATION PAGE Form Appro OMB No. 07 | | | | | | |--|---|--|-----------------------|--------------------------------------|--| | Public reporting burden for this collection of i | viewing instructions, | searching existing data sources, | | | | | of information, including suggestions for redu | nd completing and reviewing this collection of in
ucing this burden to Washington Headquarters S | Services, Directorate for Informati | ion Operations and Re | ports, 1215 Jefferson Davis Highway, | | | 1.AGENCY USE ONLY | the Office of Management and Budget, Paperwo 2. REPORT DATE | 3. REPORT TYPE AND | | | | | | February 2007 | Final | | | | | 4. TITLE AND SUBTITLE | | | 5. FUNDING N | UMBERS | | | CHNO Energetic Polymer | Specific Heat Prediction Fro | m The Proposed | | | | | Nominal/Generic (N/G) C _P | Concept | • | | | | | ` / - | • | | | | | | 6. AUTHOR(S) | | | | | | | James P. Billingsley | 7. PERFORMING ORGANIZATION I | NAME(S) AND ADDRESS(ES) | | 8. PERFORMIN | G ORGANIZATION | | | | esearch, Development, and | | REPORT NU | MBER | | | Engineering Command | , 1 | | TR-AMR | -SS-07-04 | | | ATTN: AMSRD-AMR-SS | -EG | | | | | | Redstone Arsenal, AL 3589 | 98-5000 | | | | | | , and the second | GENCY NAME(S) AND ADDRESS(E | S) | 10. SPONSORI | NG / MONITORING | | | | (0,7,11,2,7,2,2,1,2,0) | -, | | EPORT NUMBER | | | | | | | | | | 44 OUDDI EMENTADY NOTES | | | | | | | 11. SUPPLEMENTARY NOTES | | | | | | | 12a. DISTRIBUTION / AVAILABILIT | Y STATEMENT | | | 12b. DISTRIBUTION CODE | | | Approved for public release, of | | | | | | | , | | | | A | | | | | | | | | | | | | | | | | 13. ABSTRACT (Maximum 200 Wo | rds) | | | | | | | specific heat (C _P) of CHNO | energetic polymers | relative to the | eir impact shock | | | I | ented in MICOM TR-RD-SS | · · | | * | | | _ | on-report, RDECOM TR-A | | | | | | | etic materials. The motivation | | | | | | | whose C_P was unknown. Thi | | | | | | | P for a relatively new CHNO | | | ar appreciation of the 14 S | | | | | •••••••••••••••••••••••••••••••••••••• | 44 0110 1507 750110 | | | | 45 NUMBER OF 54 050 | | | 14. SUBJECT TERMS CHNO Energetic Polymers | Specific Heat Heat Sensiti | vity Impact Shock | | 15. NUMBER OF PAGES
44 | | | CHNO Energetic Polymers, Specific Heat, Heat Sensitivity, Impact Shock Sensitivity, Nominal/Generic (N/G) C _P , FOX-7 | | | | | | | | | | | 16. PRICE CODE | | | 17. SECURITY CLASSIFICATION OF REPORT | 18. SECURITY CLASSIFICATION OF THIS PAGE | 19. SECURITY CLASSIF
OF ABSTRACT | FICATION | 20. LIMITATION OF ABSTRACT | | | UNCLASSIFIED | UNCLASSIFIED | UNCLASSII | FIED | SAR | | NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102 #### **ACKNOWLEDGEMENTS** The author gratefully acknowledges the assistance of Davidson Technologies, Inc. personnel in preparing this report. Ms. Judy Smith typed the manuscript and Mr. Shane Strickland assisted in preparing the computer-drawn graphs. # TABLE OF CONTENTS | | | <u>Page</u> | |------|---|-------------| | I. | INTRODUCTION | . 1 | | II. | BACKGROUND INFORMATION | . 2 | | | A. The Δ (v.e.) _{TR} Concept
B. The N/G C _P Concept | . 2 | | III. | EXAMPLE OF C _P PREDICTION FOR FOX-7 VIA THE N/G C _P CONCEPT | . 6 | | IV. | DISCUSSION | . 8 | | V. | RECOMMENDATIONS | . 8 | | | REFERENCES | . 15 | | | APPENDIX A: COMPUTATION OF m _{AV} , d _{1av} AND MW FOR FOX-7 | A-1 | | | APPENDIX B: SPECIFIC HEAT (C _P) UNITS CONVERSION RELATIONS | B-1 | # LIST OF ILLUSTRATIONS | <u>Figure</u> | <u>Title</u> | <u>Page</u> | |---------------|--|-------------| | 1. | FOX-7 C _P Prediction Comparison | 13 | | 2. | Comparison of the Proposed N/C C _P and the Calculated C _P for FOX-7 From Reference 8 | 13 | # LIST OF TABLES | <u>Table</u> | <u>Title</u> | Page | |--------------|---|------| | 1. | The Generic C _P per Average Atom for CHNO Explosives | 9 | | 2. | FOX-7 C _P Prediction Via the Proposed N/G C _P | 10 | | 3. | FOX-7 Computed Specific Heat Results for FOX-7 From Reference 8, (Fig. 6) | 11 | | 4. | FOX-7 C _P (T) Prediction Comparison | 12 | #### I. INTRODUCTION References 1 through 6 have demonstrated that the one-dimensional (1-D) plane impact shock sensitivity of several important energetic polymeric chemical CHNO compounds can be correlated to how much heat energy, Δ (v.e.)_{TR}, they can absorb before some type of reaction (melt, phase transition, deflagration, or detonation) occurs. The amount of internal energy that can be soaked up is directly related to the material's specific heat (C_P) magnitude and variation with temperature (T). See Section II.A. for more details about the Δ (v.e.)_{TR} concept that relates C_P heat absorption to impact shock sensitivity. The C_P (T) of CHNO energetic polymers is a very important property from both heat and impact shock sensitivity view points. As such, a simple C_P (T) estimation/prediction procedure is also desirable and very important when experimental data may not be available. One attempt at a C_P (T) estimation/prediction scheme is documented in Reference 7 and briefly described in Section II.B. of this report. This is the so called Nominal/Generic (N/G) C_P per average atom concept. An N/G C_P was proposed based on the observation that the C_P 's per average atom for CHNO explosives at a given temperature did not deviate very much from each other. So in lieu of experimental C_P data for a CHNO explosive compound, the N/G C_P could be utilized to make a C_P prediction. A successful application of this C_P estimation procedure is documented in Section III of this report for the FOX-7 CHNO explosive compound. This application is called "successful" because the predicted C_P agreed remarkably well with C_P results computed by a much more complex and sophisticated analysis. #### II. BACKGROUND INFORMATION #### A. The Δ (v.e.)_{TR} Concept Essentially, the area Δ (v.e.)_{TR} under the C_P versus Temperature (T) plots between temperature limits (Experimental Test Temperature (T_{EXP}) and Reactive Temperature (T_R)) is a measure of how much atomic vibratory energy explosives can absorb before a reaction occurs. The reaction may be melting, phase change, decomposition, burning, or even detonation. Thus, to a good approximation, it could be expected that if Δ (v.e)_{TR} amount of energy is suddenly added via
impact shock loading, then a reaction may occur. This Δ (v.e.)_{TR} concept, that impact shock sensitivity or shock induced reactivity of energetic materials could be related to their specific heat (C_P) variation with temperature, was demonstrated in References 1 and 2 for RDX, TETRYL, PETN, TNT, and TATB, which are basic secondary reactive compounds. In References 3 and 4, the Δ (v.e.)_{TR} ideas were demonstrated for HMX and HNS which are also important basic secondary explosive compounds. The impact shock response of these seven compounds ranges from very insensitive to highly sensitive. Most of these seven basic energetic compounds have been the main ingredient of useful explosive mixtures. One such mixture is the plastic bonded explosive designated as PBX-9502 that is 95 percent TATB and 5 percent KEL-F80. PBX-9502 has been rather extensively tested via 1-D shock loading at various temperatures, and its thermal characteristics have also been experimentally explored. Consequently, with this much information available, Δ (v.e.)_{TR} concept computations were made for PBX-9502. The exploratory comparative results for this important energetic material were highly affirmative and are documented in References 5 and 6. General details of the exploratory computation and experimental data comparisons involved in a general Δ (v.e.)_{TR} assessment are contained in the following paragraphs. The thermal atomic vibratory energy increment, Δ (v.e.)_{TR}, is related to macroscopic critical particle (or mass) velocities (U_{PCR}) and impact shock pressures via Equations (1) through (6). For certain explosives, a good estimate of the critical particle velocity, U_{PCR} , where a reaction (or detonation) occurs is: $$U_{P_{CRI}} = \sqrt{\frac{\Delta(v.e.)_{T_R}}{m_{AV}}}$$ (1) In some circumstances, a better estimate of the critical particle velocity is: $$U_{PCR2} = \sqrt{\frac{2\Delta(v.e.)_{TR}}{m_{AV}}} = \sqrt{2} \quad U_{PCR1}$$ (2) where: When good comparisons can be made, it has been generally found that experimental detonation particle (mass) velocity threshold values (U_{PTH}) will be somewhere between U_{PCRI} and U_{PCR2} . Certain explosives, when heated to higher and higher temperatures, melt before they explode (RDX and TNT, for example). This melting will require that the heat of fusion (ΔH_F) be absorbed by the material at $T=T_{MELT}$ conditions before the temperature will increase [9, 10]. Consequently, if T_{EXP} is less than T_{MELT} , then the total heat absorbed from $T=T_{EXP}$ to $T=T_{EXPL}=T_R$ is: $$\Delta(v.e.)_{\text{Tr}} = \int_{\text{Texp}}^{\text{Tmelt}} C_{\text{P}} dT + \Delta H_{F} + \int_{\text{Tmelt}}^{\text{Texpl}} C_{\text{P}} dT. \tag{4}$$ Therefore, for solid energetic materials which melt prior to explosion, then Δ (v.e.)_{TR}, as defined by Equation (4) is employed in Equations (1) and (2) to compute U_{PCR1} and U_{PCR2} , respectively. Note that melting is just one example of a phase transformation which may require an enthalpy increment (ΔH_T) to be activated. For example, HMX can exist in different solid polymorphic forms. At a certain temperature, T_T , one form may change to another form if the heat energy of transformation (Δ H_T) is supplied. Therefore, ΔH_T should be added to Equations (3) and (4) if T_R is greater than T_T . Note that Δ (v.e.)_{TR} as defined by Equations (3) and (4) is actually an enthalpy increment (Δ H). However, it was shown via numerical examples in Appendix B of Reference 1 that, under the experimental C_P acquisition conditions, the pressure times volume terms were minute compared to the C_P integral, $\int_{T_{EXP}}^{T_R} C_p dT$. Thus, $\int_{T_{EXP}}^{T_R} C_p dT$ is essentially all of the internal energy difference caused by thermal stimulation during standard tests at atmospheric pressure to determine the specific heat characteristics. Once Δ (v.e.)_{TR} and U_{PCR} values are computed, the corresponding shock velocity (U_{SCR}) is ascertained from experimental data for U_S as a function of the particle velocity, U_P . The experimental relationship is usually linear and written empirically as: $$U_S = C_O + S U_P \tag{5}$$ When $U_P = U_{PCR}$ and $U_S = U_{SCR}$ are determined, the shock pressure is computed from the following well known relation: $$P_{S} = \rho_{e} U_{S} U_{P}, \qquad (6)$$ Where $\rho_0 = \text{Material density (grams/cm}^3)$. Then U_{PCR} , U_{SCR} , and P_{SCR} may be compared to experimental shock-induced reaction threshold information to check the validity of the above Δ (v.e.)_{TR} theory to denote reactive conditions under impact shock stimuli. The numerical computations involved in a Δ (v.e.)_{TR} assessment are straightforward and may be performed with a hand-held calculator. It must be emphasized that any possible effect of pressure on C_P is not taken into account in the present analysis. The basic idea is that if a quantity of thermal vibration energy, Δ (v.e.)_{TR}, under quiescent conditions is able to create a reaction, then the same amount of energy added by an impact shock (e_i or e_t) should also cause some type of reaction. The shock-induced reaction may not be the same type as the temperature induced reaction, but will nevertheless, be a reaction of some kind. It may be less or more severe than the thermally induced reaction. The C_P unit of calorie/(atom $^{\circ}K$) was employed in plots of C_P versus T information, which are shown in this report. This is because the Boltzman constant, k_B =0.33 x 10^{-23} calories/(atom $^{\circ}K$) and the maximum C_P at high temperatures for many materials is 3 $k_B \approx 1.0$ x 10^{-23} calories/(atom $^{\circ}K$). This is a good mnemonic reference level for comparison purposes. It was noted in Reference 1 that the average C_P per atom for most polymers never reaches the 3 k_B level before a reaction (phase change, melting, glass-to-rubber transition, or even detonation) occurs. Actually, C_P for some atoms, or combinations of atoms, probably reaches the 3 k_B level and causes a reaction at some T_R . But C_P for a large number of atoms remains much less than 2 k_B . Thus, a large amount of the possible thermal vibratory energy is never activated and the average C_P per atom remains relatively low [14]. In many cases, important temperature induced reactions occur near the average $C_P \approx 2 k_B$ level at moderate temperatures (400 to 600 °K). #### B. The N/G C_P Concept It was first documented in Reference 1 that the C_P [Cal/(atom $^{\circ}$ K)] magnitudes (at a given T) for five solid explosive compounds (RDX, TETRYL, PETN, TNT, and TATB) did not differ very much from each other. In Reference 3, it was demonstrated that the C_P for HNS was very close to that for TATB, and the C_P for HMX was somewhat less than the TATB C_P at the higher temperatures. Liquid TNT has a larger C_P (at a given T) than these solid energetic compounds. These statements are corroborated by the experimental C_P information exhibited in Figures 1 through 4 of Reference 7. So with two exceptions (melted TNT and δ – HMX), the C_P per atom of five important secondary energetic compounds all had very similar magnitudes near that for TATB. HNS also has the same magnitude and trend (non-linear variation) with temperatures as TATB. The other explosives (RDX, TNT, TETRYL and PETN) C_P have a linear variation (a + b T) over most of their temperature range. The amount of heat energy these compounds and mixtures can absorb varies considerately. TATB and PBX-9502 can soak up more heat energy, Δ (v.e.)_{TR}, than the others by a considerable margin. That is, their reactive temperatures, T_R , were much greater than the other compounds (more than 100 °K for TNT, HNS and HMX and over 200 °K for TETRYL, PETN, and RDX). So based on the above remarks and similar remarks in References 1, 3, and 5, a nominal C_P per average atom was proposed and defined as shown in Figure 2 and listed in Table 1. These nominal C_P magnitudes at Room Temperature (RT) and above are very similar to those of TATB, particularly at the high temperatures. Below RT, the proposed N/G C_P magnitudes are very close to (or equal to) the RDX C_P values and TNT C_P values near absolute zero. In Reference 7, two examples (TNT and HMX) were selected for comparative computations where U_{PCR} and P_{SCR} were calculated via the experimental C_P and the N/G C_P . TNT has a high C_P relative to the N/G C_P and HMX has a low C_P relative to the N/G C_P . Two cases were considered for TNT where the large liquid C_P was included in Case 1. Consequently, excluding Case 1 for TNT where the large liquid C_P had to be included in the U_{PCR} (EXP) and P_{SCR} (EXP) computations, then for TNT (Case 2), PBX-9502, and HMX, the maximum percentage differences between the (EXP) C_P and (N/G) C_P results were bounded by: $$\frac{\Delta U_{\text{Pcr}}}{U_{\text{Pcr}}(EXP)} \ = \ \frac{U_{\text{Pcr}}(N/G) - U_{\text{Pcr}}(EXP)}{U_{\text{Pcr}}(EXP)} \ X \ 100.0 < | \ 2.5\% \ | \eqno(9)$$ $$\frac{\Delta P_{SCR}}{P_{SCR}(EXP)} = \frac{P_{SCR}(N/G) - P_{SCR}(EXP)}{P_{SCR}(EXP)} \times 100.0 < |3.5\%|$$ (10) These small differences provide considerable credibility for the proposed N/G C_P per average atom concept for most CHNO energetic materials. #### III. EXAMPLE OF C_P PREDICTION FOR FOX-7 VIA THE N/G CONCEPT The relatively new CHNO explosive compound, FOX-7 (1, 1-Diamino-2, 2-Dinitroethylene), has generated a considerable amount of interest among explosive investigators within the last decade. References 8 through 11 are a good sampling of the experimental and theoretical efforts devoted to this energetic material. However, there has been no
experimental determination of FOX-7's specific heat, but there is a rather sophisticated and complex theoretical prediction of C_P as a function of T given in Reference 8. As such, this fits our search criteria for a good CHNO energetic compound to apply the N/G C_P concept for predicting the C_P magnitudes. Thus, FOX-7 is a good choice for a C_P prediction example Via the N/G C_P concept because: - 1. No experimental C_P (T) data for FOX -7 were available and, consequently, could not have influenced the proposed N/G C_P magnitudes. - 2. There was, however, a theoretical computation of C_P (T) for FOX-7 that was available for comparison with C_P (T) from any other predictive scheme or with experimental data. In Appendix A, the Molecular Weight (MW) and m_{AV} (mass of an <u>average</u> atom) for FOX-7 are computed. These values are: $$m_{AV} = 1.756239 (10^{-23}) \text{ grams/atom}$$ Also for $$C_2 H_4 N_4 O_4 = C_i H_j N_k O_1$$ $$q = i + j + k + 1 = 14.0$$ atoms/molecule From various sources, Avogadro's number is: $$N_{AV} = 6.02252 (10^{+23}) = molecules/MW$$ = Number of molecules per mole (MW) in a chemical compound. Also N_{AV} is the number of atoms in an Atomic Weight (AW) of an element. As shown in Appendix A, the number of atoms per mole (MW) of FOX-7 can be computed by two different ways. These are: 1. NAPMW₁ = $$\frac{MW}{m_{AV}}$$ = $\frac{Grams/MW}{Grams/Atom}$ = $\frac{148.086}{1.756329(10^{-23})}$ = 84.315638 (10⁺²³) Atoms/MW 2. NAPMW₂ = $q N_{AV}$ = $\frac{Atoms}{Molecule} \cdot \frac{Molecules}{MW}$ = (14.0) (6.02252 x 10⁺²³) = 84.315280 (10⁺²³) $\frac{Atoms}{MW}$ These results for NAPMW agree to three decimal places and so NAPMW = $$84.315 (10^{+23}) \text{ Atoms/MW}$$ is used in the following computations to predict the FOX-7 C_P from the N/G C_P . That is, for a given temperature (T): $$\begin{split} FOX\text{--}7 \ C_P &= \quad (NAPMW) \qquad C_{P_{N/G}} \\ &= \quad \left(\frac{Atom}{MW}\right) \left(\frac{Cal.}{Atom - {}^{\circ}K}\right) \qquad = \quad \left(\frac{Cal.}{MW - {}^{\circ}K}\right) \end{split}$$ Also: $$FOX-7 \ C_P \quad = \quad \ 4.184 \ C_P \left(\frac{Cal.}{MW - {}^{\circ}K} \right) \qquad \quad = \quad \left(\frac{Joules}{MW - {}^{\circ}K} \right)$$ These C_P prediction computations are listed in Table 2 for a wide range of temperatures (100 to 650 °K). The results, C_P [Joules/ (MW-°K)], are plotted versus T (°K) in Figure 1. Table 3 lists the FOX-7 theoretical C_P [Joules/ (MW- $^{\circ}$ K)] results from Reference 8, (Fig. 6). This information is also plotted in Figure 1 for comparative purposes. The C_P magnitudes from these two predictive schemes are in remarkably close agreement. Table 3 also contains the conversion of the Reference 8 FOX-7 C_P in [Cal/ (Atom-°K)]. These results are plotted in Figure 2 along with the proposed N/G C_P that is in the same units. As expected from the Figure 1 comparison, the FOX-7 C_P and the N/G C_P , on a per average atom basis, agree exceptionally well. #### IV. DISCUSSION As shown in Figure 1, the FOX-7 C_P (T) magnitudes, predicted from the proposed N/G C_P concept in the present report and the theoretical C_P results in Reference 8, compare exceptionally well. Table 4 lists the magnitude and the percentage differences. The percentage difference is within 6.0 percent for 100 °K \leq T \leq 400 °K. The largest negative difference (-5.9 percent) occurs at $100\,^{\circ}$ K and the greatest positive difference (+3.9 percent) occurs at $400\,^{\circ}$ K. So the predictive trends (or slopes) with temperature are slightly different but the C_P magnitudes are quite comparable. This is remarkable, considering the differences in sophistication and complexity between the predictive methods. #### V. RECOMMENDATIONS As a result of the present analysis and comparison of predicted C_P (T) results for the FOX-7 CHNO explosive compound, the following recommendations are made: - 1. Experimental C_P data for FOX-7 should be acquired: - a. To compare with both C_P predictions. - b. To have the authoritative C_P for use in the Δ (v.e.)_{TR} concept impact shock sensitivity computations. - 2. The temperature range should be from 100 °K to a practical upper limit from experimental considerations. See Reference 11 for documentation of early work on thermal sensitivity. - 3. Plane shock impact experiments should be performed to ascertain a lower threshold detonation limit for U_P or P_S . This should be done for more than one temperature (T_{EXP}). Reference 5 documents a Δ (v.e.)_{TR} concept shock sensitivity analysis for PBX-9502 at four T_{EXP} temperatures (218, 300, 348 and 525 °K). - 4. Predict the FOX-7 C_P (T) variation using Satoh's scheme for submolar group additive contributions to the total C_P of a polymer compound. See References 12 and 13 for further information on this additive property as applied to inert polymers. With regard to recommendations 1, 2 and 3, this experimental data may be available for FOX-7, but if so, it is not known to the author of this report. With regard to recommendation No. 4, some rather affirmative preliminary C_P predictions via the Satoh submolar group additive property have been made for TNT and RDX. Similar computations will be made for FOX-7 and all these C_P predictive results for energetic polymer compounds will be published in a forthcoming report. The above recommendations/applications/comments concerning explosives in this report should also be valid for solid CHNO rocket propellants. Table 1. The Generic C_P per Average Atom for CHNO Explosives | T | T | C_{P} | Remarks | |-------|------|-------------------------|---------------| | °K | °C | <u>Cal</u>
Atom - °K | ~ | | | | | | | 0.0 | -273 | 0.0000 | † | | 7.0 | -266 | $0.001344(10^{-23})$ | Same as | | 15.0 | -258 | $0.01463(10^{-23})$ | RDX (S.C.)*** | | 78.0 | -195 | $0.1629(10^{-23})$ | \ | | | | | | | 100.0 | -173 | $0.2000(10^{-23})$ | † | | 150.0 | -123 | $0.2611(10^{-23})$ | | | 200.0 | -73 | $0.3222(10^{-23})$ | | | 218.0 | -55 | $0.3442(10^{-23})$ | | | 250.0 | -23 | $0.3833(10^{-23})$ | See Note 1 | | 293.0 | 20 | $0.4359(10^{-23})$ | | | 300.0 | 27 | $0.4444(10^{-23})$ | | | 348.0 | 75 | $0.5031(10^{-23})$ | | | 350.0 | 77 | $0.5056(10^{-23})$ | | | 400.0 | 127 | $0.5667(10^{-23})$ | | | 450.0 | 177 | $0.6277(10^{-23})$ | | | 500.0 | 227 | $0.6889(10^{-23})$ | | | 525.0 | 252 | $0.7194(10^{-23})$ | | | 550.0 | 277 | $0.7500(10^{-23})$ | ★ | | | | | | | 600.0 | 327 | $0.7600(10^{-23})$ | 1 | | 650.0 | 377 | $0.7600(10^{-23})$ | Same as | | 669.0 | 396 | $0.7600(10^{-23})$ | TATB | | 700.0 | 427 | $0.7600(10^{-23})$ | \ | ***S.C. = Single Crystal Note 1: $$C_P \left[\text{Cal/(Atom - }^{\circ} \text{K} \right] = \left[0.2000 + 0.001222 \left(\text{T} - 100 \right) \right] 10^{-23}$$ = $\left[0.07780 + 0.001222 \, \text{T} \left(^{\circ} \text{K} \right) \right] 10^{-23}$ For: $100 \le T (^{\circ}K) \le 550$ Table 2. FOX-7 C_P Prediction Via the Proposed N/G C_P | Т | Т | C _P
(N/G) | NAPMW | C _P
FOX-7 | C _P
FOX-7 | C _P
FOX-7 | |-----|------|-------------------------|-----------------------------|-------------------------|-------------------------|-------------------------| | °K | °C | Cal. | Atoms | Cal. | Joules | Joules | | IX | C | Atom – °K | MW | MW - °K | MW - °K | Gram - °K | | 0 | -273 | 0.0 | 84.315 (10 ⁺²³) | 0.0 | 0.0 | 0.000 | | 100 | -173 | $0.2000 (10^{-23})$ | 84.315 (10 ⁺²³) | 16.863 | 70.555 | 0.476 | | 150 | -123 | $0.2611 (10^{-23})$ | $84.315 (10^{+23})$ | 22.015 | 92.109 | 0.622 | | 200 | -73 | $0.3222(10^{-23})$ | 84.315 (10 ⁺²³) | 27.166 | 113.664 | 0.768 | | 250 | -23 | $0.3833(10^{-23})$ | 84.315 (10 ⁺²³) | 32.318 | 135.218 | 0.913 | | 300 | 27 | $0.4444(10^{-23})$ | 84.315 (10 ⁺²³) | 37.470 | 156.773 | 1.059 | | 350 | 77 | $0.5056 (10^{-23})$ | $84.315 (10^{+23})$ | 42.630 | 178.363 | 1.204 | | 400 | 127 | $0.5667 (10^{-23})$ | 84.315 (10 ⁺²³) | 47.781 | 199.917 | 1.350 | | 450 | 177 | $0.6277 (10^{-23})$ | 84.315 (10 ⁺²³) | 52.925 | 221.436 | 1.495 | | 500 | 227 | $0.6889 (10^{-23})$ | $84.315 (10^{+23})$ | 58.085 | 243.026 | 1.641 | | 550 | 277 | $0.7500 (10^{-23})$ | 84.315 (10 ⁺²³) | 63.236 | 264.580 | 1.787 | | 600 | 323 | $0.7600 (10^{-23})$ | $84.315 (10^{+23})$ | 64.079 | 268.108 | 1.810 | | 650 | 377 | $0.7600 (10^{-23})$ | 84.315 (10 ⁺²³) | 64.079 | 268.108 | 1.810 | MW (FOX-7) = 148.086 Grams/Mole Table 3. FOX-7 Computed Specific Heat Results for FOX-7 From Reference 8, (Fig. 6) | Т | Т | C _P *
(Fig.6) | C_{P} | C_{P} | C_P^{**} | |--------------|------|-----------------------------|--|--|-----------------------------| | °K | °C | Joules Cell Mole – °K | $\frac{\text{Joules}}{\text{Mole} - {}^{\circ}\text{K}}$ | $\frac{\text{Cal.}}{\text{Mole} - {}^{\circ}\text{K}}$ | Cal.
Atom−°K | | 0 | -273 | 0.00 | 0.00 | 0.0000 | $0.0000 (10^{-23})$ | | 50 | -223 | 180.00 | 45.00 | 10.7553 | 0.1276 (10 ⁻²³) | | 100 | -173 | 300.00 | 75.00 | 17.9254 | 0.2126 (10 ⁻²³) | | 150 | -123 | 380.00 | 95.00 | 22.7055 | 0.2693 (10 ⁻²³) | | 200 | -73 | 475.00 | 118.75 | 28.3819 | 0.3366 (10 ⁻²³) | | 250 | -23 | 550.00 | 137.50 | 32.8633 | 0.3898 (10 ⁻²³) | | 300
(RT) | 27 | 640.00 | 160.00 | 38.2409 | 0.4535 (10 ⁻²³) | | 350 | 77 | 705.00 | 176.25 | 42.1248 | 0.4996 (10 ⁻²³) | | 400
(EOD) | 127 | 770.00 | 192.50 | 46.0086 | 0.5457 (10 ⁻²³) | ^{*} The C_P from Fig. 6 of Reference [8] is for 4 moles of FOX-7. FOX-7 $$\rightarrow$$ C₂ H₄ N₄ O₄ \rightarrow q = 14.0 Atoms/Molecules $$N_{AV}$$ = Avogadro's number = 6.02252 (10⁺²³) = Molecules/Mole $$NAPMW = q N_{AV} = 84.315 (10^{+23}) = Atoms/Mole$$ ** $$C_P [Cal/(Atom - {}^{\circ}K)] = C_P [Cal/(Mole - {}^{\circ}K)] / (NAPMW)$$ RT = Room Temperature EOD = End of Data Table 4. FOX-7
$C_P(T)$ Prediction Comparison | Т | Т | \mathbf{C}_{P_1} | $\mathbb{C}_{\mathbb{P}_2}$ | ΔC_{P} | $\frac{\Delta C_P}{C_{P_1}} (100)$ | |-----------|------|--|--------------------------------|-----------------------------------|------------------------------------| | °K | °C | $\frac{\text{Joules}}{\text{Mole} - {}^{\circ}\text{K}}$ | Joules
Mole – °K | Joules
Mole – °K | Percentage
Difference | | | | Ref. [8],
(Table 3) | Present
Report
(Table 2) | C _{P2} - C _{P1} | % | | 0 | .273 | 0.000 | 0.000 | 0.000 | 0.00 | | 100 | -173 | 75.000 | 70.555 | -4.445 | -5.93 | | 150 | -123 | 95.000 | 92.109 | -2.891 | -3.04 | | 200 | -73 | 118.750 | 113.664 | -5.086 | -4.28 | | 250 | -23 | 137.500 | 135.218 | -2.282 | -1.66 | | 300 (RT) | 27 | 160.00 | 156.773 | -3.227 | -2.02 | | 350 | 77 | 176.250 | 178.363 | +2.113 | +1.20 | | 400 (EOD) | 127 | 192.500 | 199.917 | +7.417 | +3.85 | $$\frac{\Delta C_P}{C_{P_1}}\big(100\big) = \left(\frac{C_{P_2} - C_{P_1}}{C_{P_1}}\right) \text{ x } 100.00 = \text{Percent Difference}$$ Figure 1. FOX-7 C_P Prediction Comparison Figure 2. Comparison of the Proposed N/C C_P and the Calculated C_P for FOX-7 From Reference 8 #### REFERENCES - 1. Billingsley, J. P., "Energetic Materials Shock Sensitivity Relevance to Specific Heat Properties," Technical Report RD-SS-95-2, July 1995, U.S. Army Missile Command, Redstone Arsenal, Alabama 35898. - 2. Billingsley, J.P., Energetic Materials Shock Sensitivity Relevance to Specific Heat Properties," paper in Shock Compression of Condensed Matter 1995, AIP Conference Proceedings, 370, Part 1, Pages 429-432. - 3. Billingsley, J.P., "Two Additional Examples of Energetic Materials Shock Sensitivity Correlations with Specific Heat Characteristics," Technical Report RD-SS-99-8, June 1999, U.S. Army Missile Command, Redstone Arsenal, Alabama, 35898. - 4. Billingsley, J.P., "HMX and HNS Shock Sensitivity Correlation with Specific Heat and Reactive Temperature Magnitudes," Paper in Shock Compression of Condensed Matter 1999, AIP Conference Proceedings 505, Part II, Pages 899-902. - 5. Billingsley, J.P., "Impact Shock Sensitivity of a TATB Based Explosive Relevant to Specific Heat Properties," Technical Report TR-AMR-SS-06-09, February, 2006, U.S. Army RDECOM, Redstone Arsenal, Alabama 35892. - 6. Billingsley, J.P., "PBX-9502 Shock Sensitivity Correlation with Specific Heat and Reactive Temperature Magnitudes," paper presented at the AIP Shock Compression of Condensed Matter -2005 Conference, July 31 August 5, 2005. - 7. Billingsley, J.P., "The Nominal/Generic Specific Heat Per Average Atom Concept for CHNO Energetic Materials," Technical Report AMR-SS-06-35, July 2006, U.S.Army RDECOM, Redstone Arsenal, Alabama 35892. - 8. Zerilli, F.J., and Kuklja, M. M., "Equation of state of 1, 1-Diamino-2, 2-Dinitroethylene from First Principles," paper in Shock Compression of Condensed Matter -2005 Proceeding, AIP Conference Proceedings 845, 2006, pages 183-186, edited by M.D. Furnish: M. Elbert: T. P. Russell, and C.T. White. - 9. Zerilli, F.J.,,and Kuklja, M.M., "Ab-Initio O°K Isotherm for organic Molecular Crystals," paper in Shock Compression of Condensed Matter 2003 Proceedings, AIP Conference Proceedings 706, 2004, pages 123-126, edited my M.D. Furnish, Y. M. Gupta, and J. W. Forbes. - Kuklja, M.M., Rashkeev, S.N., and Zerilli, F.J., "Ab-Initio Calculations of the Electronic Structure of 1, 1-Diamino-2, 2-Dinitro-Ethylene," paper in Shock Compression of Condensed Matter – 2003 Proceedings, AIP Conference Proceedings 706, 2004, pages 363-366, edited by M.D. Furnish, Y. M. Gupta, and J. W. Forbes. - 11. Ostmark, J., Langlet, A., Bergman, J., Wingborg, N., Wellmar, U., and Bemm, U., "FOX-7 A New Explosive with Low Sensitivity and High Performance," paper in Eleventh International Detonation Symposium Proceedings, Published as ONR 33300-5, 2000, pages 807-812. - 12. Satoh, Shun-Ichi, "Heat Capacity and Chemical Constitution," Journal of Scientific Research Institute (Tokyo), Vol. 43, No.1194, 1948, pages 19-30. - 13. Van Krevelen, D.W., Properties of Polymers, Third Completely Revised Edition, Elsevier Scientific Publishing Company, Amsterdam, 1990. - 14. Van Krevelen, D.W., and Hoftyzer, P.J., "Properties of Polymers", Elsevier Scientific Publishing Company, Amsterdam, 1976. # $\label{eq:appendix} \begin{array}{c} APPENDIX\ A\\ COMPUTATION\ OF\ m_{AV},\ d_{1av}\ and\ MW\ for\ FOX-7 \end{array}$ #### APPENDIX A #### Computation of m_{AV}, d_{1av} and MW for FOX-7 The solid materials considered in this study were chemical mixtures. For these mixtures, the weighted average mass, m_{AV} , of a single atom in the material was desired. First, it was necessary to compute the mass of a single atom for each of the elements contained in the solid. The solid was composed of one or more of the following elements: Carbon, C; Hydrogen, H; Nitrogen, N; Oxygen, O: The mass of a single atom of these elements is: $$m = \frac{AW}{N_{AV}} = \frac{gram/(gram - mole)}{atoms/(gram - mole)} = \frac{grams}{atom}$$ [A-1] Where: $$AW = \frac{grams}{gram - mole}$$ Nav = Avagadros Number = $$6.02252 \times 10^{+23} \frac{\text{atoms}}{\text{gram - mole}}$$ Table A-1 lists AW and m for each of the elements in the above list. Values of Nav and AW are from various chemistry text books and handbooks. To compute the average weight (m_{AV}) of an atom in the material, the chemical formula or proportional chemical composition is required. Of course, the weight (m) of each elemental atom must be known, since m_{AV} is just a weighted average of the elemental atoms in the material. The procedure is valid for mixtures of compounds as well as compounds. See References [1 & 3] for examples. When m_{AV} is computed, then the average space between the atoms (d_{1AV}) is given by the following relation: $$d_{1av} = \left(\frac{m_{AV}}{\rho_{o}}\right)^{1/3} = cm$$ [A-2] Computations of m_{AV} and d_{1AV} for FOX-7 are included in this appendix. The Molecular weight, MW, is also calculated. ## Computation of m_{AV} for FOX-7 Table A-1. Mass of a Single Atom for Selected Elements | Element | AW | N_{AV} | m | |--------------|--------------|--------------------|----------------------------| | | <u>Grams</u> | <u>Atoms</u> | <u>Grams</u> | | | Gram - Mole | Gram - Mole | Atom | | Carbon (C) | 12.011 | $6.02252(10^{23})$ | 1.9943(10 ⁻²³) | | Hydrogen (H) | 1.008 | $6.02252(10^{23})$ | $0.1674(10^{-23})$ | | Nitrogen (N) | 14.008 | $6.02252(10^{23})$ | 2.3259(10 ⁻²³) | | Oxygen (O) | 16.00 | $6.02252(10^{23})$ | $2.6567(10^{-23})$ | FOX-7 chemical composition: C₂ H₄ N₄ O₄ [8, 11] Table A-2. FOX-7 m_{AV} Computation $$C_2$$ 2 x 1.9943 (10⁻²³) = 3.9886 (10⁻²³) Grams H_4 4 x 0.1674 (10⁻²³) = 0.6696 (10⁻²³) Grams N_4 4 x 2.3259 (10⁻²³) = 9.3036 (10⁻²³) Grams O_4 4 x 2.6567 (10⁻²³) = 10.6268 (10⁻²³) Grams 14 Atoms weigh 24.5886 (10⁻²³) Grams $$m_{AV} = \frac{24.5886 (10^{-23}) \, Grams}{14 \, Atoms} = 1.756329 (10^{-23}) \frac{Grams}{Atoms}$$ $\approx 1.7563 (10^{-23}) \, Grams \, per \, average \, Atom$ #### Computation of d_{1AV} for FOX-7 Reference [11] gives the following density values for FOX-7. $\rho_{\circ} = 1.65 \text{ Grams/CC (for small scale gap test)}$ $\rho_{\circ} = 1.878 \text{ Grams/CC (for crystal density)}$ For $$\rho_{\circ} = 1.65 \text{ Grams/CC}$$ $$d_{1AV}^{3} = \frac{m_{AV}}{\rho_{\circ}} = \frac{17.563 (10^{-24})}{1.65} \frac{Grams}{Grams/CC} = CM^{3}$$ $$= 10.644242 (10^{-24}) CM^{3}$$ $d_{1AV} = 2.199741 (10^{-8}) CM = 2.1997 A$ For $$\rho_{\circ} = 1.878 \text{ Grams/CC}$$ $$d_{1AV}^{3} = \frac{m_{AV}}{\rho^{\circ}} = \frac{17.563(10^{-24})}{1.878} \frac{Grams}{Grams/CC} = CM^{3}$$ $$= 9.351970 (10^{-24}) CM^{3}$$ $d_{1AV} = 2.106852 (10^{-8}) CM = 2.1069 A$ These values for d_{1AV} are much larger than C(1)-C(2) bond lengths $(1.456\,A)$ and N(12)-O(22) bond lengths $(1.242\,A)$ given in Reference [11]. However, Figure 6 of Reference [11] shows a layered structure of the molecules where the minimum separation distance between nitrogen and oxygen atoms is $3.11\,A$. So the average distance between atoms is approximately $2.10\,A$ as shown in the above computations. ## **Computation of MW for FOX-7** Chemical formula = $C_2 H_4 N_4 O_4 =$ $C_i H_j N_k O_l$ Table A-3. MW Calculation for C₂ H₄ N₄ O₄ | Element | AW | n | n x AW | | |--------------|---|-------|-------------|---------------| | | grams | ~ | grams | | | | gram - mole | | gram - mole | | | Carbon (C) | 12.011 | i = 2 | 24.022 | Grams | | Hydrogen (H) | 1.008 | j = 4 | 4.032 | Grams | | Nitrogen (N) | 14.008 | k = 4 | 56.032 | Grams | | Oxygen (O) | 16.000 | 1 = 4 | 64.000 | Grams | | M | $W = \sum_{n \in \mathbb{N}} n \times AW$ | , = | 148.086 | grams
mole | So MW = 148.086 Grams ≈ 148 Grams NAPMW = $$\frac{MW}{m_{AV}}$$ = $\frac{148.086}{1.756329(10^{-23})} \frac{Grams}{\left(\frac{Grams}{Atom}\right)}$ = Atoms = 84.315638 10⁺²³ Atoms per mole This checks well with: NAPMW = $$q N_{AV}$$ = $(14.0) (6.02252 * 10^{+23})$ = $84.315280 * 10^{+23}$ Where: $$q = \sum n = i + j + k + l = 2 + 4 + 4 + 4 = 14 \frac{Atoms}{Molecule}$$ $N_{AV} = Avogadro's number - No. of molecules per MW.$ (Molecules/MW) # $\label{eq:appendix B} \textbf{APPENDIX B} \\ \textbf{SPECIFIC HEAT (C_P) UNITS CONVERSION RELATIONS} \\$ #### Appendix B #### Specific Heat (C_P) Conversion Relations Experimental Specific heat data are usually given in calories (cal) or Joules (J) per molecular weight (MW) per ° centigrade (°C) or ° Kelvin (°K). That is: $$C_P = C_P$$ (cal. per MW per ° C or °K) or $$C_P = C_P$$ (J per MW per °C or °K). Occasionally, C_P is presented as cal. or J per gram °C or °K. $$C_P = C_P$$ (cal per gram per °C or °K) or $$Cp = Cp (J per gram per °C or °K)$$ Note that: Cp (cal. or J per gram per $$^{\circ}$$ C of $^{\circ}$ K) = Cp (cal, or J per MW per $^{\circ}$ C or $^{\circ}$
K)/MW. Since interest is in Cp (cal or J per atom per °C or °K) then, Cp (cal. or J per atom per °C or °K = m_{AV} Cp (cal. or J per gram per °C or °K). See Appendix A for procedures to determine m_{AV} . Note that 1° C = 1° K, and that the conversion factor between Joules and calories is 4.184 so that: Cp (J per atom per $$^{\circ}$$ K) = 4.184 * Cp (cal per atom per $^{\circ}$ K). Also, since 1 Joule = $$10^7$$ ergs = 10^7 grams (cm/sec) 2 then, Cp grams $$(cm^2/sec^2)$$ per atom per °K = 10^7 . (J per atom per °K). The above relations were employed in Reference 2, and the present report. However, Cp can also be given in terms of a velocity squared per °K as follows: $$\begin{split} &Cp(cm^2/sec^2~per~^\circ K)=10^7~x~Cp~(J~per~gram~per~^\circ K).~In~these~units~for~Cp,~\Delta(v.e.)_{TR}~=\\ &\int_{T_{EXP}}^{T_R} C_p dT~=(cm/sec)^2,~so~U_{PCR1}~=~\sqrt{\Delta(v.e.)_{TR}}~=and~U_{PCR2}~=~\sqrt{2\Delta(v.e)_{TR}}~=~\sqrt{2}~U_{PCR1}~. \end{split}$$ This eliminates having to compute an average mass $(m_{\rm AV})$ and the C_P in calories or Joules per average atom. # INITIAL DISTRIBUTION LIST | | | <u>Copies</u> | |--|----------------------------------|---------------| | Weapon Systems Technology Info
ATTN: Ms. Vakare Valaitis
1901 N. Beauregard Street, Suite 4
Alexandria, VA 22311-1720 | rmation Analysis Center (WSTIAC) | 1 | | Defense Technical Information Ce
8725 John J. Kingman Rd., Suite O
Fort Belvoir, VA 22060-6218 | | 1 | | AMSRD-AMR | | Electronic | | AMSRD-AMR-IN-IC | | 2 | | AMSRD-L-G-I, | Anne Lanteigne | 1 | | Los Alamos National Laboratory
ATTN: Dr Steven A. Sheffield/Dr.
Group DX-1
Mail Stop P-952
Los Alamos, NM 87545 | R.L. Gustavsen | 1 | | Los Alamos National Laboratory
ATTN: Dr. Phillip M. Howe
Mail Stop 945
Los Alamos, NM 87545 | | 1 | | Los Alamos National Laboratory
ATTN: Roberta Mulford
Mail Stop NMT-15
Los Alamos, NM 87545 | | 1 | | Los Alamos National Laboratory ATTN: Davis Tonks Dean Preston X-7 Mail Stop F699 Los Alamos, NM 87545 | | 1 | | Los Alamos National Laboratory
ATTN: Dr. Douglas G. Tasker
Mail Stop J566
Los Alamos, NM 87545 | | 1 | | Los Alamos National Laboratory | Copies 1 | |---|----------| | ATTN: George Gray III Mail Stop G-755 Los Alamos, NM 87545 | 1 | | Los Alamos National Laboratory
ATTN: James N. Johnson/James D. Johnson
Mail Stop B-221
Los Alamos, NM 87545 | 1 | | Los Alamos National Laboratory ATTN: Blain Asay Mail Stop C-920 Los Alamos, NM 87545 | 1 | | Los Alamos National Laboratory ATTN: Joseph N. Fritz DX-1 Mail Stop P-953 Los Alamos, NM 87545 | 1 | | Los Alamos National Laboratory ATTN: Dr. Joseph C. Foster, Jr./Dr. Y. Horie 34 Parr Circle Ft. Walton Beach, FL 32548 | 1 | | Sandia National Laboratory ATTN: Dr. Mark B. Boslough Shock Wave and Explosion Physics P.O. Box 5800, Division 1153 Albuquerque, NM 87185 | 1 | | Dr. Dennis Hayes Consultant Box 591 Tijeras, NM 87059 | 1 | | Sandia National Laboratory ATTN: Dr. M. D. Furnish/Dr. L.C. Chhabildas Mail Stop 1181 P.O. Box 5800 Albuquerque, NM 87185-1191 | 1 | | Sandia National Laboratory | Copies
1 | |---|-------------| | ATTN: Marlin E. Kipp
Mail Stop 0820
P.O. Box 5800
Albuquerque, NM 87185-0820 | | | Mr. Jon Maienschein/Dr. L. Fried/Dr. F. Garcia
Lawrence Livermore National Laboratory
Mail Code L-282
P.O. Box 808
Livermore, CA 94551 | 1 | | Dr. Craig M. Tarver/Dr. P.A. Urtiew/Dr. K.S. Vandersall
Lawrence Livermore National Laboratory
Mail Code L-282
P.O. Box 808
Livermore, CA 94551 | 1 | | Dr. Neil Holmes Lawrence Livermore National Laboratory Mail Code L-041 P.O. Box 808 Livermore, CA 94551 | 1 | | U.S. Army Picatinny Arsenal
Energetic Materials Division, Bldg. 3028
ATTN: Dr. Surya N. Bulusu
Picatinny, NJ 07806-5000 | 1 | | Naval Surface Warfare Center – Indian Head
ATTN: Dr. Ruth Doherty
101 Strauss Avenue
Indian Head, MD 20640-5035 | 1 | | Naval Surface Warfare Center – Dahlgren Division
ATTN: Mr. Daniel Vavrick
Code G-22
17320 Dahlgren Road
Dahlgren, VA 22448-5100 | 1 | | Naval Surface Warfare Center – Indian Head
ATTN: Dr. C.S. Coffey/ Dr. J. M. Short
101 Strauss Avenue
Indian Head, MD 20640-5035 | 1 | | Naval Research Laboratory | Copies
1 | |---|-------------| | Dynamics of Solids Branch Condensed Material and Radiation Sciences Division ATTN: Mr. Andrew E. Williams Washington, DC 20375 | • | | U. S. Army Research Laboratory ATTN: Mr. Douglas E. Kooker AMSRL-WM-TB Aberdeen Proving Ground, MD 21005-5066 | 1 | | U.S. Army Research Laboratory 1
ATTN: Dr. Dattatraya Dandekar
Aberdeen Proving Ground, MD 21005-5066 | | | Director U.S. Army Research Laboratory
SLCRO-MS
ATTN: Dr. Kailasam Iyer/Dr. Michael Cistan
Research Triangle Park, NC 27709-2211 | 1 | | U.S. Army Research Office
ATTN: Mr. David Mann
P.O. Box 12211
Research Triangle Park, NC 27709-2211 | 1 | | Eglin Air Force Base
ATTN: (AFMC) Dr. Bill Dyess
46 Test Wing
Eglin AFB, FL 32542-5910 | 1 | | Wright-Patterson Air Force Base
ATTN: Dr. Ted Nicholas
WRDC-MLLN
Wright-Patterson, AFB, OH 45433 | 1 | | Director U.S. Army Research Laboratory AMSRD-ARL-WM-TD ATTN: Dr. S.B. Segletes Aberdeen Proving Ground, MD 21995-5066 | 1 | | Director U.S. Army Research Laboratory AMSRD-ARL-SL-BE ATTN: Dr. E.G. Davis Aberdeen Proving Ground, MD 21995-5066 | 1 | | California Institute of Technology Division of Geological and Planetary Sciences ATTN: Dr. Thomas J. Ahrens MS-252-21 Pasadena, CA 91125 | <u>Copie</u>
1 | |---|-------------------| | University of Texas at Austin Department of Aerospace Engineering and Engineering Mechanics ATTN: Dr. Byron Tapley W.R. Woolrich Labs Austin, TX 78712-1085 | 1 | | University of Dayton Research Institute Impact Physics Group ATTN: Dr. N. S. Brar 300 College Park Avenue Dayton, OH 45469-0182 | 1 | | U.S. Naval Academy ATTN: Dr. Mark Ehlert Chemistry Department Annapolis, MD 21402 | 1 | | University of California – Los Angeles
ATTN: Professor John J. Gilman
6532 Boelter Hall
Los Angeles, CA 90024 | 1 | | Argonne National Laboratory Technical Information Services Report Unit Bldg. 203 Argonne, IL 60439 | 1 | | Dr. E.R. Fitzgerald
Box 291
Monkton, MD 21111 | 1 | | Institute for Advanced Technology 1 ATTN: Dr. Stephen Bless/Dr. Harry Fair 4030 Braker Lane, Ste. 200 Austin, TX 78759 | | | | <u>Copies</u> | |---|---------------| | University of Denver Denver Reasearch Institute ATTN: Mr. Larry Brown Denver, CO 80108 | 1 | | Washington State University Institute for Shock Physics Department of Physics ATTN: Dr. Y. M. Gupta/Dr. James R. Asay Pullman, WA 99164-2816 | 1 | | Center for Explosive Technology Research Campus Station ATTN: Dr. Pers-Anders Person Socorro, NM 87801 | 1 | | Southwest Research Institute Engineering Dynamics Department ATTN: Dr. Charles E. Anderson, Jr./Dr. James Walker P.O. Drawer 28510 San Antonio, TX 78228-0510 | 1 | | University of Delaware Department of Chemistry and Biochemistry ATTN: Professor Thomas B. Brill Newark, DE 19716 | 1 | | Georgia Institute of Technology
School of Materials Science and Engineering
ATTN: Dr. N.N. Thadhani
771 Ferst Drive
Atlanta, GA 30332-04245 | 1 | | Brown Unversity Division of Engineering ATTN: Dr. R.J. Clifton 182 Hope Street Providence, RI 02912 | 1 | | Lynn Barker
Valyn International
Box 11647
Albuquerque. NM 87192 | 1 | | | <u>Copies</u> | |--|---------------| | Dr. Leonard. I. Stiel Polytechnic University 6 Metrotech Center Brooklyn, NY 11201 | 1 | | Zernow Technical Services, Inc.
ATTN: Dr. Louis Zernow
425 West Bonita Avenue, Suite 208
San Dimas, CA 91773 | 1 | | Alan M. Frank and Associates ATTN: Dr. Alan M. Frank 748 Wimbledon Lane Livermore, CA 94559 | 1 | | SRI International
ATTN: Dr. Paul DeCarli/Dr. L. Seaman
333 Ravenswood Avenue
Menlo Park, CA 94025 | 1 | | Dynetics, Inc. ATTN: Mr. James Miller 1000 Explorer Blvd. Huntsville, AL 35806 | 1 | | Davidson Technologies, Inc. ATTN: Mr. Shane Strickland Mr. Chris Pitts Ms. Judy Smith 530 Discovery Drive Huntsville, AL 35806 | 1
1
1 | | Morgan Research Corporation
ATTN: Mr. Brent Deerman/Mr. Scott Hill
4811 A Bradford Drive
Huntsville, AL 35805-1948 | 1 | | Enig Associates, Inc.
ATTN: Mr. Julius W. Enig
12501 Prosperity Drive # 340
Silver Spring, MD 20404 | 1 | | International Research Associates ATTN: Dr. Dennis L. Orphal 4450 Black Avenue, Suite E Pleasanton, CA 94566 | 1 | | | Copies | |---|--------| | Vitali F. Nestorenko
UCSD
9500 Gilman Drive | 1 | | La Jolla, CA 92093-0411 | | | Dr. Julius Roth
Consultant
308 Canyon Drive
Portola, CA 94025 | 1 | | Dr. Franklin E. Walker
Interplay
584 W. Treeline Dr
Alpine, UT 84994 | 1 | | Dr. Muril Robertson
Gleason Research Associates
2227 Drake Avenue SW
Suite 2
Huntsville, AL 35805
| 1 | | Mr. Hugh R. James
AWE, Aldermaston
Bldg. E1
RG7 4PR,
Reading, Berkshire, UK | 1 | | Mr. Frederic Peugeot Technical Specialist MSIAC, NATO Headquarters B-1110, Brussels Belgium | 1 | | Dr. Manfred Held
TDW/EADS
86532 Schroben Hausen, Germany | 1 | | Dr. Dana D. Dlott
University of Illinois
600 S. Matthews Avenue
Urbana, IL 61801 | 1 | | Alliant, Inc. ATTN: A. Garn Butcher P.O. Box 98 Magna, UT 84037 | 1 | | Dr. Joe Carleone
Sr. VP and Chief Products Officer
Irvine Sensors Corporation
3001 Red Hill Ave., Bldg 4, Suite 108
Costa Mesa, CA 962626-453 | Copies
1 | |--|-------------| | Applied Research Associates, Inc. ATTN: Dr. Dennis D. Grady 4300 San Mateo Blvd., NE: Suite A-220 Albuquerque, NM 87110 | 1 | | ITT Industries Inc. ATTN: Dr. James Wilbeck 6767 Old Madison Pike Huntsville, AL 35806 | 1 | | Raytheon Company ATTN: W. Zar 1151 E. Hermans Rd Bldg. 810, M/S 8 Tucson, AZ 85706 | 1 | | Brigs Company ATTN: Joseph E. Backofen 4192 Hales Ford Road Moneta, VA 24121 | 1 | | Dr. S.K. (Jim) Chan
4076 Kuchiran St.
Pierrefonds, P Q
Canada, H9H4A9 | 1 | | Dr. Martin Braithwaite Imperial College London Department of Chemical Engineering and Chemical Technology Room 336, Roderic Hill Building South Kensington Campus London, SW7 2AZ, England | 1 | | U.S. Army Space and Missile Def
Mr. Mike Schexnayder
Deputy Director
USASMDC/ARSTRAT
Bldg 5220
Redstone Arsenal, AL 35898 | ense Command | Copies
1 | |--|---|---------------------------------| | U.S. Army Space and Missile Def
Mr. Kirk Newman
SMDC-RD-ICM
Bldg 5220
Redstone Arsenal, AL 35898 | ense Command | 1 | | Dr. F.J. Zerilli
Naval Surface Warfare Center
Research and Technology Departr
Indian Head, MD 20640 | ment | 1 | | Dr. M.M. Kuklja
National Science Foundation
Division of Materials Research
Arlington, VA 22230 | | 1 | | AMSRD-AMR-AS-TI | Mr. Tommy Harris
Mr. Frank Wlodarski | 1
1 | | AMSRD-AMR-PS | Mr. Steve Cornelius
Dr. Mike Lyon | 1
1 | | AMSRD-AMR-PS-PR | Mr. W.M. Chew
Mr. Jay Lilley
Mr. R.W. Milton
Mr. D.M. Thompson | 1
1
1
1 | | AMSRD-AMR-PS-WF | Mr. Jason Gilliam Mr. Scott Howard Mr. Greg Johnson Dr. Darin Kielsmeier Mr. Donald Lovelace Mr. Adolphus McDonald Mr. Allen Stults Mr. Paul Turner | 1
1
1
1
1
1
1 | | | | Copies | |------------------|---|--| | AMSRD-AMR-SG-RF | Dr. Brian Smith | 1 | | AMSRD-AMR-SS | Mr. Greg Tackett | 1 | | AMSRD-AMR-SS-AT | Mr. Richard Kretzschmar | 1 | | AMSRD-AMR-SS-AV | Mr. Steve Low | 1 | | AMSRD-AMR-SS-EG | Dr. J.P. Billingsley Mr. Jason Brister Mr. Dustin Clark Ms. Edith Crow Mr. Brian Harrison Ms. Ann Kissell Ms. Susan Parker Mr. Allen Pike Mr. Glenn Romanczuk Mr. William Schrenk Mr. Dan Shady Ms. Kimberly Williams | 10 (paper) 1 (electronic) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | AMSRD-AMR-SS- HW | Mr. Alex Jolly | 1 | | AMSRD-AMR-SS-MD | Mr. James Grabney/Mr. Brad G | ass 1 | | AMSRD-AMR-SS-TM | Mr. Scott Speigle | 1 | | AMSRD-AMR-WS | Dr. J. S. Bennett/Dr. Holloman | 1 | | SFAE-MSL-CWS-E | Mr. Al Dykstra | 1 | | SFAE-MSLS-JAMS | Mr. Chuck Allen/ Mr. Ralph Par | rker 1 |